Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Clin Med ; 11(18)2022 Sep 13.
Article in English | MEDLINE | ID: covidwho-2055266

ABSTRACT

Extracorporeal Membrane Oxygenation (ECMO) is an advanced life support modality for patients with respiratory or cardiac failure refractory to standard therapy [...].

2.
J Clin Med ; 11(14)2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1938858

ABSTRACT

BACKGROUND: Hospital mortality and admission to the Intensive Care Unit (ICU) are markers of disease severity in COVID-19 patients. Cardiovascular co-morbidities are one of the main determinants of negative outcomes. In this study we investigated the impact of cardiovascular co-morbidities on mortality and admission to the ICU in first-wave COVID-19 patients. METHODS: A multicenter, retrospective, cohort study. A total of 1077 patients were analyzed for mortality and ICU admission. Cardiovascular risk factors were explored as determinants of the outcomes after correction for other confounders. RESULTS: In the multivariable model, after correction for age, only a history of heart failure remained independently associated (p = 0.0013) with mortality (hazard ratio 2.22, 95% confidence interval 1.37 to 3.62). Age showed a mortality risk increase of 8% per year (hazard ratio 1.08, 95% confidence interval 1.05 to 1.10, p = 0.001). The transition from ward to the ICU had, as a single determinant, the age, but in a reversed fashion (hazard ratio 0.96, 95% confidence interval 0.94 to 0.98, p = 0.0002). CONCLUSIONS: Once adjusted for the main determinant of mortality (age) heart failure only remained independently associated with mortality. Admission to the ICU was less likely for elderly patients. This may reflect the catastrophic impact of the first wave of COVID-19 pandemic in terms of ICU bed availability in Lombardy, leading to a selection process for ICU admission.

3.
J Clin Med ; 11(4)2022 Feb 16.
Article in English | MEDLINE | ID: covidwho-1707271

ABSTRACT

BACKGROUND: Presently, a number of specific observations have been performed on microcirculatory function in a coronavirus disease-19 (COVID-19) setting. We hypothesized that, in the critically ill, endothelial dysfunction secondary to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the subsequent inflammation and coagulopathy may lead to microcirculatory alterations, further exacerbated by the hypoxemic state. A dysfunctional microcirculation may represent the hidden motor underlying the development of COVID-19's clinical manifestations. METHODS: A single center, prospective, observational study. We analyzed bedside sublingual microcirculation in twenty-four consecutive COVID-19-associated acute respiratory distress syndrome (ARDS) patients mechanically ventilated in an Intensive Care Unit (ICU), together with macro-hemodynamics, clinical parameters, echocardiography, and laboratory data at a single time-point after ICU admission. All participants were recruited between March and May 2020. RESULTS: The microcirculatory pattern was characterized by increased values of total vessel density and perfused vessel density, a reduced value of proportion of perfused vessels and microvascular flow index, and high values of heterogeneity index. The duration of mechanical ventilation before microcirculation assessment was inversely associated with the proportion of perfused vessels (p = 0.023). Within the macro-hemodynamic parameters, the right ventricle end-diastolic diameter was inversely associated with proportion of perfused vessels and microvascular flow index (p = 0.039 and 0.014, respectively) and directly associated with the heterogeneity index (p = 0.033). CONCLUSIONS: In COVID-19-associated ARDS patients, the microcirculation showed impaired quality of flow parameters coupled with a high vessel density.

4.
J Thromb Haemost ; 18(7): 1747-1751, 2020 07.
Article in English | MEDLINE | ID: covidwho-1317985

ABSTRACT

BACKGROUND: Few observations exist with respect to the pro-coagulant profile of patients with COVID-19 acute respiratory distress syndrome (ARDS). Reports of thromboembolic complications are scarce but suggestive for a clinical relevance of the problem. OBJECTIVES: Prospective observational study aimed to characterize the coagulation profile of COVID-19 ARDS patients with standard and viscoelastic coagulation tests and to evaluate their changes after establishment of an aggressive thromboprophylaxis. METHODS: Sixteen patients with COVID-19 ARDS received a complete coagulation profile at the admission in the intensive care unit. Ten patients were followed in the subsequent 7 days, after increasing the dose of low molecular weight heparin, antithrombin levels correction, and clopidogrel in selected cases. RESULTS: At baseline, the patients showed a pro-coagulant profile characterized by an increased clot strength (CS, median 55 hPa, 95% interquartile range 35-63), platelet contribution to CS (PCS, 43 hPa; interquartile range 24-45), fibrinogen contribution to CS (FCS, 12 hPa; interquartile range 6-13.5) elevated D-dimer levels (5.5 µg/mL, interquartile range 2.5-6.5), and hyperfibrinogenemia (794 mg/dL, interquartile range 583-933). Fibrinogen levels were associated (R2  = .506, P = .003) with interleukin-6 values. After increasing the thromboprophylaxis, there was a significant (P = .001) time-related decrease of fibrinogen levels, D-dimers (P = .017), CS (P = .013), PCS (P = .035), and FCS (P = .038). CONCLUSION: The pro-coagulant pattern of these patients may justify the clinical reports of thromboembolic complications (pulmonary embolism) during the course of the disease. Further studies are needed to assess the best prophylaxis and treatment of this condition.


Subject(s)
Betacoronavirus/pathogenicity , Blood Coagulation Disorders/blood , Blood Coagulation , Coronavirus Infections/blood , Pneumonia, Viral/blood , Aged , Anticoagulants/administration & dosage , Biomarkers/blood , Blood Coagulation/drug effects , Blood Coagulation Disorders/diagnosis , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/virology , Blood Coagulation Tests , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Female , Fibrinolytic Agents/administration & dosage , Host-Pathogen Interactions , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Prospective Studies , SARS-CoV-2 , Treatment Outcome , COVID-19 Drug Treatment
5.
J Clin Med ; 9(11)2020 Oct 28.
Article in English | MEDLINE | ID: covidwho-895386

ABSTRACT

Background: Coronavirus Disease 2019 (COVID-19)-associated coagulopathy is characterized by a prothrombotic state not yet comprehensively studied. We investigated the coagulation pattern of patients with COVID-19 acute respiratory distress syndrome (ARDS), comparing patients who survived to those who did not. Methods: In this prospective cohort study on 20 COVID-19 ARDS patients, the following biomarkers were measured: thrombin generation (prothrombin fragment 1 + 2 (PF 1 + 2)), fibrinolysis activation (tissue plasminogen activator (tPA)) and inhibition (plasminogen activator inhibitor 2 (PAI-2)), fibrin synthesis (fibrinopeptide A) and fibrinolysis magnitude (plasmin-antiplasmin complex (PAP) and D-dimers). Measurements were done upon intensive care unit (ICU) admission and after 10-14 days. Results: There was increased thrombin generation; modest or null release of t-PA; and increased levels of PAI-2, fibrinopeptide A, PAP and D-dimers. At baseline, nonsurvivors had a significantly (p = 0.014) higher PAI-2/PAP ratio than survivors (109, interquartile range (IQR) 18.1-216, vs. 8.7, IQR 2.9-12.6). At follow-up, thrombin generation was significantly (p = 0.025) reduced in survivors (PF 1 + 2 from 396 pg/mL, IQR 185-585 to 237 pg/mL, IQR 120-393), whereas it increased in nonsurvivors. Fibrinolysis inhibition at follow-up remained stable in survivors and increased in nonsurvivors, leading to a significant (p = 0.026) difference in PAI-2 levels (161 pg/mL, IQR 50-334, vs. 1088 pg/mL, IQR 177-1565). Conclusion: Severe patterns of COVID-19 ARDS are characterized by a thrombin burst and the consequent coagulation activation. Mechanisms of fibrinolysis regulation appear unbalanced toward fibrinolysis inhibition. This pattern ameliorates in survivors, whereas it worsens in nonsurvivors.

SELECTION OF CITATIONS
SEARCH DETAIL